
Karen Chisholm, Program Manager

Edited by
Sandra Porter, Program Manager

Jim Brock, Program Advisor
Ginger Fisher, Program Advisor

Office of Assessment and Curriculum
Arkansas Department of Workforce Education

PROGRAMMING I - JAVA
Curriculum Content Frameworks

Prepared by
Marilyn Carrell, Springdale High School

Carl Frank, Arkansas School for Mathematics, Sciences and the Arts
Kimberly Raup, Conway High School West

Please note: All assessment questions will
be taken from the knowledge portion of these

frameworks.

Facilitated by

LaTrenda Jackson, Program Advisor

Office of Business Marketing Technology
Arkansas Department of Workforce Education

Disseminated by

Tim Johnston, Program Advisor

Career and Technical Education
Office of Assessment and Curriculum

Development/Revision Began: 00/0000

Arkansas Department of Workforce Education

Placed on the Web: 12/2007

Page

Unit 1: Introduction to Programming and Ethics in Programming 1

Unit 2: Programming Techniques and Characteristics of Good Programs 2

Unit 3: Data Types and Mathematical Operations 4

Unit 4: Using Selected Standard Classes 6

Unit 5: Decision Structure 8

Unit 6: Loops 10

Glossary 12

Appendix A 18

Appendix B 22

Table of Contents

Programming I - Java

PROGRAMMING I - JAVA

An introduction to programming and problem solving. The language used is Java. No prior programming expereince is required. Good programming style is stressed.
Topics included are: documentation of programs, structuring programs, program flow, decision structures, and loops.

The contents of these frameworks are not necessarily intended to be taught as independent units in this order. Many of the skills are best introduced in one unit and then
spiraled back to in future units with more complexity added. However, by the end of the semester all skills should be taught.

The contents of the frameworks in Programming I, II and III are kept to the essentials. The framework team has tried to include most of the skills required in Advanced
Placement Computer Science A in these three frameworks. The teacher should easily have time to include any not mentioned into the course. We believe that it is possible
to teach all of the techniques in Advanced Placement Computer Science AB in three semesters. We expect that the teacher will use the remaining time in the semester to
cover those topics not listed in these frameworks. Upon successful completion of Programming I – Java students are ready to enter AP Computer Science.

This course requires Java 1.5.0 or later.

Grade Levels: 9, 10, 11, 12
Course Code: 492390

Prerequisite: Geometry or
Algebra II

Curriculum Content Frameworks

1.1 1.1.1 Reading

1.2 1.2.1

1.3 1.3.1

1.4 1.4.1 Reading

Reasoning

1.5 1.5.1 Reading

Thinking

1.6 1.6.1 Reading

1.7 1.7.1

Explain the difference between
interpreters and compilers

Explain the difference between
executable code and bytecode

Sees relationship between high and low level
languages [4.5.5]

Sees relationship between interpreters and
compilers [4.5.5]
Organizes and processes images – symbols,
pictures, graphs, objects, etc. [4.6.2]

Seeing Things in the
Mind's Eye

Give an example of how a compiler
functions vs. how an interpreter functions

Draw a diagram of how a Java source code
program is translated to bytecode and then
to executable code

Tell where each operating system is used
most frequently

Discuss various operating
systems and their differences
(i.e., Windows, Mac Linux)

Explain the difference between
high-level and low-level
languages

Explain the difference between
system and application software

Identify various software as either system
or application

Discuss terms related to
hardware and software

Identify technology as either hardware or
software

Classify commonly used programming
languages as high-level or low-level

Unit 1: Introduction to Programming and Ethics in Programming
Hours: 3

Terminology: Application software, Bytecode, Compiler, Hardware, High-level language, Interpreters, Low-level language, Operating system, Software, Source code, System software

FoundationDefine terminology Prepare a list of terms with definitions Applies information and concepts derived from
printed materials [1.3.3]

Knowledge Application Skill Group

Applies/Understands technical words that
pertain to JAVA Programming [1.3.6]

Foundations

Thinking Knowing how to
Learn

Comprehends ideas and concepts related to
system and application software [1.2.1]

Analyzes and applies what has been read to
system and application software [1.3.2]

Speaking

Reading

Applies new knowledge and skills to differentiate
between hardware and software [4.3.1]

Foundations Understands technical words that pertain to
various operating systems and their differences
[1.3.6]

Sees relationship between various operating
systems [4.5.5]

Thinking

Foundations Understands technical words that pertain to high
& low level languages [1.3.6]

Reasoning

Thinking

Foundations Understands technical words that compilers and
interpreters [1.3.6]

Thinking Reasoning

Skill Description

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do

ACADEMIC and WORKPLACE SKILLS

What the Instruction Should Reinforce

Programming I – Java
1

Skill Group Description
2.1 2.1.1 Reading

2.2 2.2.1 Science

Thinking Writing

2.3 2.3.1

Thinking

2.4 2.4.1 Writing

Thinking

2.5 2.5.1 Writing

Thinking

2.6 2.6.1 Writing

2.6.2 Thinking

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill

Use appropriate syntax to include
comments in programs

Write programs whose output is easy to
read and understand

Knowing How to
Learn

Applies new knowledge and skills to properly
document programs [4.3.1]

Identify syntax of comments

Explain the characteristics of
user-friendly programs

Write programs that have clear
instructions

Identify the syntax of a simple
program

Key, save, compile, and execute “Hello
World” program

Identify the syntax to output
String literals to screen

Write programs that use System.out.println
with String literals

Unit 2: Programming Techniques and Characteristics of Good Programs
Hours: 3

Terminology: //, Algorithm, Code block, Documentation, Logic errors, Program maintenance, Pseudocode, Run-time error, String, Syntax errors, Syntax, User-friendly, White space

Define terminology FoundationPrepare a list of terms with definitions Applies information and concepts derived from
printed materials [1.3.3]

Applies/Understands technical words that
pertain to programing techniques [1.3.6]

CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

Foundation Solves practical problems using scientific
methods and techniques [1.4.23]

List the steps of the
programming process

When given an example, be able to identify
the correct step

Reasoning

Organizes information into an appropriate format
[1.6.10]

Sees relationship between steps in the
programming process [4.5.5]

Writing

Reasoning

Foundations Communicates thoughts, ideas, or facts in written
form in a clear, concise manner [1.6.6]

Reasoning

Applies rules and principles to a new situation
[4.5.1]
Applies rules of grammar, punctuation,
capitalization, and spelling [1.6.3]

Applies rules and principles to a new situation
[4.5.1]

Foundation

Foundation

Organizes information into an appropriate format
[1.6.10]

Foundations

Knowing How to
Learn

Applies new knowledge and skills regarding user-
friendly software [4.3.1]

Communicates thoughts, ideas, or facts in written
form in a clear, concise manner [1.6.6]

Programming I – Java
2

Skill Group Description
2.7 2.7.1 Writing

Thinking
2.7.2

2.8 2.8.1 Writing

Writing

Thinking

2.9 2.9.1

Thinking
2.10 2.10.1 Reading

2.10.2

2.10.3

Explain the importance of
algorithm and/or pseudocode in
program development

Identifies possible reasons for problem [4.4.6]

Uses language, style, organization, and format
appropriate to subject matter, purpose, and
audience [1.6.19]

Explain the characteristics of readable
programs

Use descriptive identifiers

Document difficult logic to make it easy to
follow

Explain the characteristics of
readable programs

Identify different types of errors
(syntax, semantic, run-time,
compile time)

When given an example, identify the error
type

Foundations

Update an existing program

Applies new knowledge and skills properly [4.3.1]

Write a psuedocode (algorithm) for a
programming problem

Applies rules and principles to a new situation
[4.5.1]

Knowing How to
Learn

Communicates thoughts, ideas, or facts in written
form in a clear, concise manner [1.6.6]

Uses technical words and concepts [1.6.4]

Explain the importance of
program documentation and
maintenance

Be able to use // and /* */ to write programs
that are well-documented

Uses technical words and concepts [1.6.4]

Devises and implements a plan of action to
resolve problems [4.4.3]

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application

ACADEMIC and WORKPLACE SKILLS

Foundations

Reasoning

Skill

Foundations

Foundations

Writing

Problem Solving
Identifies relevant details, facts and specifications
[1.3.16]

Evaluates written information for accuracy,
appropriateness, and style [1.3.14]

Reading

Problem Solving

Programming I – Java
3

3.1 3.1.1 Reading

3.2 3.2.1

3.2.2

Writing
3.2.3

3.2.4 Thinking

3.3 3.3.1 Writing

3.3.2 Thinking Problem

3.4 3.4.1 Writing

3.5 3.5.1 Writing

ACADEMIC and WORKPLACE SKILLS

What the Instruction Should Reinforce

Application Skill Group Skill Description

Uses words appropriately [1.6.21]

Uses technical words and symbols [1.6.20]

Uses technical words and symbols [1.6.20]

Applies/Understands technical words that
pertain to data types and mathematical
operations [1.3.6]

Organizes information into an appropriate format
[1.6.10]

Designate data type using correct syntax

Comprehends mathematical ideas and concepts
related to the characteristics of numeric data
[1.1.13]

Foundation Arithmetic/
Mathematics

Foundations Organizes information into an appropriate format
[1.6.10]

Presents answers/conclusions in a clear and
understandable form [1.6.13]

Reasoning

Foundation

Explain the purpose of
concatenation

Write output lines using + as the
concatentation operator

Explain the purpose of escape
sequences (\n, \t, \\, \”).

Write programs that use escape
sequences to print strings

Foundation

Applies/Uses technical words and concepts
relating to String objects [1.6.4]

Demonstrates logical reasoning in reaching a
conclusion [4.4.2]

Determine whether a number should be
treated as an integer or a floating point (i.e.
single, double)

Comprehends ideas and concepts related to data
types[4.5.2]

Explain the use of a String
object

Write programs that declare and utilize
String objects

Determine whether an identification
number (such as Social Security Number)
should be treated as a string or number

List the following four primitive
types: int, boolean, double,
char.*

*While there are more primitive types than
this, only these will be tested.

Compare the four data types

Determine whether a particular “number”
would be considered numeric

Unit 3: Data Types and Mathematical Operations
Hours: 9

Terminology: Boolean, Casting, Character, Concatenation, Constants, Data type, Floating point (real), Integer division, Integer, Mathematical operators, Modulus, Order of operations,
Promotion (widening conversion), Round-off errors, Variable

Define terminology FoundationPrepare a list of terms with definitions Applies information and concepts derived from
printed materials [1.3.3]

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do

Knowledge

Programming I – Java
4

3.6 3.6.1

Thinking

3.7 3.7.1

Writing

Thinking

3.8 3.8.1

3.8.2
Thinking

3.9 3.9.1

3.9.2

3.10 3.10.1 Writing

Thinking Learning
3.10.2

3.11 3.11.1

Thinking

Uses words appropriately [1.6.21]Foundation

Reasoning

Uses words appropriately [1.6.21]

Comprehends ideas and concepts related to
using constants [4.5.2]

Reasoning Comprehends ideas and concepts related to
programs with appropriate variable names [4.5.2]

Foundation Writing

Expresses mathematical ideas and concepts
orally and in writing [1.1.23]Write math expessions correctly that use

promotion and casting

Comprehends mathematical ideas and concepts
related to the characteristics of arithmetic
operations and order of operations [1.1.13]

Comprehends ideas and concepts related to
writing formulas [4.2.2]

Arithmetic/
Mathematics

Foundations

Application Skill Group Skill

Comprehends ideas and concepts related to the
characteristics of numeric data [4.2.2]

Description

ACADEMIC and WORKPLACE SKILLS

What the Instruction Should Reinforce

Decision Making

Applies mathematical principles related to integer
variables. [1.1.4]

Arithmetic/
Mathematics

Foundations

Use floating point variables in programs
where appropriate

Write programs that use descriptive
variable names

Use constants when appropriate in
programs

Write programs that use descriptive
variable names

Explain the circumstances and
give examples of appropriate
occasions to use constants.

Explain the advantages and
disadvantages of floating-point
numbers (round-off errors, more
memory, approximate answers,
slower computation, size of
numbers to be stored, etc.)

Applies new knowledge and skills to choosing
variable names [4.3.1]

Decision Making

Calculate mathematic expression as it pertains to
casting and promotion [1.1.8]

List arithmetic operations and
order of operations
(*, /, %, +, -)

Write formulas using operators and order
of operations

Determine the correct answer to math
expressions where casting and promotion
are involved

Write programs that use mathematical
operations correctly (integer arithmetic vs
floating point arithmetic)

Explain the difference in
promotion and casting.

Explain rules for choosing
variable names

Explain the advantages of using
integer variables whenever
possible (faster computation,
require less memory, obtain
exact answers)

Use integer variables in programs where
appropriate

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do

Knowledge

Foundations Arithmetic/
Mathematics

Uses words appropriately [1.6.21]

Foundations Arithmetic/
Mathematics

Comprehends ideas and concepts related to
floating point variables [4.5.2]

Applies mathematical principles related to floating-
point variables [1.1.4]

Reasoning

Programming I – Java
5

4.1 4.1.1 Reading

4.2 4.2.1 Writing

4.3 4.3.1 Writing

Thinking

4.4 4.4.1 Writing

Thinking

4.5 4.5.1 Writing

Thinking Knowing
How to

4.6 4.6.1 Writing

Thinking
Applies new knowledge and skills closing a
scanner object [4.3.1]

Knowing How to
Learn

Describe how to instantiate a
Scanner object.
(java.util.Scanner)

Describe how to close a
Scanner object
(java.util.Scanner)

Revise the program above so that it closes
the scanner object

Write a program that instantiates a
Scanner object

Describe how to read the
following data types from the
keyboard using the Scanner
object: nextLine(), nextInt(),
nextDouble()
(java.util.Scanner)

Expand the program above so that it reads
Strings, ints and doubles from the keyboard

Define terminology

Explain the purpose of the
compiler directive import

Write programs that import the selected
classes

Give examples of meaningful
prompts

Prepare a list of terms with definitions

Write programs with meaningful prompts

Hours: 9

Terminology: Arguments, Class, Interactive program, Method, Object, Parameters (formal parameters), Prompt, Pseudorandom, Return type

Unit 4: Using Selected Standard Classes

Note to Teachers: The Scanner class from Java 1.5.0 and later is used for keyboard input. There is an explanation in the supplementary materials following the glossary. The random
method is from the Math class.

Foundation

Foundation Uses languages, style, organization, and format
appropriate to subject matter, purpose, and
audience [1.6.19]

Applies information and concepts derived from
printed materials [1.3.3]

Applies/Understands technical words that
pertain to standard classes [1.3.6]

Thinking Reasoning

Foundations Communicates thoughts, ideas, or facts in written
form in a clear, concise manner [1.6.6]

Comprehends ideas and concepts related to
formatting [4.5.2]

Organizes information into an appropriate format
[1.6.10]

Foundations

Applies new knowledge and skills to properly
prompt user(s) of the program [4.3.1]

Knowing How to
Learn

Foundations

Applies new knowledge and skills to allow input
from the user(s) of the program [4.3.1]

Knowing how to
learn

Applies/Uses technical words and concepts
[1.6.4]

Foundations

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do

Knowledge Application

ACADEMIC and WORKPLACE SKILLS

What the Instruction Should Reinforce

Skill Group Skill Description

Applies/Uses technical words and concepts
[1.6.4]

Applies new knowledge and skills to allow input
from the user(s) of the program [4.3.1]

Programming I – Java
6

4.7 4.7.1 Writing

4.8 4.8.1 Writing

4.9 4.9.1 Writing

Thinking

4.10 4.10.1

4.11 4.11.1

Thinking

4.12 4.12.1

Thinking

Organizes information into an appropriate format
[1.6.10]

Organizes information into an appropriate format
[1.6.10]

ACADEMIC and WORKPLACE SKILLS

What the Instruction Should Reinforce

Skill Group Skill Description

Foundations

Write a program that uses sqrt , pow , and
abs Math functions in calculations

Describe how to obtain a
random double and explain the
range of possible values (Math
class)

Describe how to obtain an
integer random integer in the
range of 0 .. N or 1 .. N inclusive
(Math class)

Write a program that obtains and uses
random integers in the ranges 1 .. N and 0
.. N using (int) ((high - low + 1) *
Math.Random() + low) formula

Describe how to use the Math
class to get a square root,
power and/or absolute value
(sqrt , pow , abs methods)

Write a program that obtains and uses
random numbers using Math.Random()

Write a program that instantiates a
DecimalFormat object

Describe how to print using a
specific number of digits before
and/or after the decimal place
with the format method from
DecimalFormat
(java.text.DecimalFormat)

Describe how to set up a
variable to print currency or
percents using NumberFormat
and how to use the format
method
(java.text.NumberFormat)

Write a program that displays the output in
currency and percent formats

Write a program that displays the output
with a specified number of decimal places

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do

Knowledge Application

Describe how to instantiate a
DecimalFormat object and how
to use # and 0 to print the
specified digits
(java.text.DecimalFormat)

Comprehends ideas and concepts related to
integer random integer [4.4.1]

Applies new knowledge and skills to display
output in a specific format [4.3.1]

Knowing How to
Learn

Comprehends a mathematical ideas and
concepts related to Math.Random [1.1.13]

Comprehends ideas and concepts related to
Math.Random functions [4.4.1]

Foundations Applies/Uses technical words and concepts
[1.6.4]

Foundations Organizes information into an appropriate format
[1.6.10]

Applies mathematical principles related to Math
functions [1.1.4]

Arithmetic/
Mathematics

Problem Solving

Applies/Uses technical words and concepts
[1.6.4]

Problem Solving

Foundations Arithmetic/
Mathematics

Applies mathematical principles related to
Math.Random functions [1.1.4]

Foundations Arithmetic/
Mathematics

Applies mathematical principles related to
Math.Random functions [1.1.4]

Foundations

Programming I – Java
7

5.1 5.1.1 Reading

5.2 5.2.1

Thinking

5.3 5.3.1

Thinking Learning

5.4 5.4.1

Thinking

5.5 5.5.1 Writing

5.5.2

5.6 5.6.1 Writing

Write programs that use braces correctly to
form block if statements

Comprehends ideas and concepts related to the
logic of an if statement [4.5.2]

Explain the syntax and logic of
if-else statements

Write statements that use if-else to make
the correct decision based on the data; use
braces where needed to block the
statements Reasoning Comprehends ideas and concepts related to the

logic of an if-else statement [4.5.2]

Thinking

Organizes information into an appropriate format
[1.6.10]

Foundation

Reasoning

Applies new knowledge and skills appropriately
[4.3.1]

Learning How to
Learn

Explain how to use the
compareTo() and equals()
methods from the String class

Write boolean expressions that compare
strings for equality and order

Interprets mathematical symbols [1.1.26]

Applies new knowledge and skills to strings
[4.3.1]

Comprehends ideas and concepts related to the
comparison of two strings [4.5.2]

Foundation Arithmetic/
Mathematics

Interprets mathematical symbols [1.1.26]

Prepare a list of terms with definitions Applies information and concepts derived from
printed materials [1.3.3]

Applies/Understands technical words that
pertain to decision structure [1.3.6]

List relational operators Foundation Arithmetic/
Mathematics

Interprets mathematical symbols [1.1.26]Write boolean expressions that use the
appropriate relational operator

ACADEMIC and WORKPLACE SKILLS

What the Instruction Should Reinforce

Skill Group Skill Description

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do

Knowledge Application

Thinking

Explain the syntax and logic of
if statements

Write programs that use if statements

Reasoning

Organizes information into an appropriate format
[1.6.10]

Foundation Applies rules of punctuation [1.6.3]

When given two strings, determine if they
are equal, the first is smaller, or the first is
larger

Foundation Arithmetic/
Mathematics

Reasoning

Comprehends ideas and concepts related to
relational operators [4.5.2]

Unit 5: Decision Structure
Hours: 15

Terminology: Boolean expression, Logical operators, Nested decision statements, Relational operator, Short-circuit, Truth tables

Define terminology Foundation

Describe the process of
comparing two strings

Programming I – Java
8

5.7 5.7.1 Writing

5.8 5.8.1

Writing
5.8.2

Thinking

Organizes information into an appropriate format
[1.6.10]

Arithmetic/
Mathematics

Problem Solving Demonstrates logical reasoning in reaching a
conclusion [4.4.2]

Reasoning

Foundation Applies mathematical principles related to logical
operators [1.1.4]

Thinking Comprehends ideas and concepts related to the
logic of an if-else statement [4.5.2]

Foundation Organizes information into an appropriate format
[1.6.10]

ACADEMIC and WORKPLACE SKILLS

What the Instruction Should Reinforce

Skill Group Skill Description

Explain the syntax and logic of
nested statements

Write programs using block if-else for 3 or
more alternatives

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do

Knowledge Application

Write a program that requires the use of
short-circuit and (&&) and short-circuit or
(||)

Explain the use of logical
operators and , or , and not (&&,
||, !)

Write programs which require the use of
&&, ||, and !

Programming I – Java
9

6.1 6.1.1 Reading

6.2 6.2.1 Writing

6.3 6.3.1 Arithmetic

Writing

6.4 6.4.1 Writing

6.4.2
Thinking

6.5 6.5.1 Writing Organizes information into an appropriate format
[1.6.10]

Comprehends ideas and concepts related to the
logic of an for loop [4.5.2]

Write programs that use while loopsExplain the logic of while loops Foundation

Thinking Reasoning

Explain the procedure to use for
loops to count in increments/
decrements other than one

Demonstrates logical reasoning in reaching a
conclusion [4.4.2]

Determine the output of a nested loop

Write programs that use nested for loops

Applies mathematical principles related to for
loops and increments [1.1.4]

Organizes information into an appropriate format
[1.6.10]

Comprehends ideas and concepts related to the
logic of an for loop [4.5.2]

Write counting for loops with increments
other than 1

Thinking Reasoning

Prepare a list of terms with definitions Applies information and concepts derived from
printed materials [1.3.3]

Applies/Understands technical words that
pertain to loops [1.3.6]

Comprehends ideas and concepts related to the
logic of an for loop [4.5.2]

Write programs that use for loops

ACADEMIC and WORKPLACE SKILLS

What the Instruction Should Reinforce

Skill Group Skill DescriptionKnowledge

Foundation Organizes information into an appropriate format
[1.6.10]

Thinking Reasoning

Foundation Organizes information into an appropriate format
[1.6.10]

Problem Solving

Foundation

Application

Explain the syntax of nested
loops

Describe the purpose and
syntax of for loops

Unit 6: Loops
Hours: 21

Terminology: Accumulators, Counters, Entrance condition loops, Exit condition loops, Nested loops

Define terminology Foundation

CAREER and TECHNICAL SKILLS

What the Student Should be Able to Do

Programming I – Java
10

6.6 6.6.1

Writing

6.7 6.7.1 Arithmetic

Writing

6.8 6.8.1

Writing

Write programs that use counters with
loops

Explain the process of using
counters with loops

Applies mathematical principles related to using
accumulators with loops [1.1.4]

Organizes information into an appropriate format
[1.6.10]

Write programs that use accumulators with
loops

Explain the logic of using
accumulators with loops

Organizes information into an appropriate format
[1.6.10]

Foundation Arithmetic/
Mathematics

Applies mathematical principles related to using
loops with counters [1.1.4]

CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Thinking Reasoning

Thinking Reasoning

Foundation Arithmetic/
Mathematics

Comprehends ideas and concepts related to the
logic of while and do while loops [4.5.2]

Explain the difference in the
effect of a while loop (entrance
condition loop) and a do while
(exit condition loop) loop

Thinking Reasoning Comprehends ideas and concepts related to
counters with loops[4.5.2]

Write programs that use do while loops Applies mathematical principles related to while
and do while loops [1.1.4]

Comprehends ideas and concepts related to
using accumulators with loops [4.5.2]

Foundation

Organizes information into an appropriate format
[1.6.10]

Knowledge Application Skill Group Skill Description

Programming I – Java
11

1. Application software – programs that perform a specific task, such as games, word processing, and spreadsheets

2. Bytecode – the result of the compiler which must still be interpreted using the Java Virtual Machine; bytecode is stored in class files

3. Compiler – a program that converts the entire program into machine code for most languages; in Java, it converts to bytecode

4. Hardware – the physical components of the computer

5. High-level language – programming language that is made up of English-like instructions

6. Interpreters – a program that translates and executes code; also known as the Java Virtual Machine (JVM) and it "interprets" bytecode

7. Low-level language – machine language (first-generation) and assembly language (second generation)

8. Operating system – computer software that runs the computer – it allows the user to communicate, save, print, load programs, etc

9. Software – computer instructions, also called programs or applications

10. Source code – the program written in its original language, such as Java

11. System software – programs that run the computer and its components

Glossary
Unit 1: Introduction to Programming and Ethics in Programming

Programming I – Java
12

1. // – escape characters that begin a line of comment, which is ignored by the compiler

2. Algorithm – step-by-step process for solving a problem

3. Code block – a group of one or more statements enclosed within opening and closing braces

4. Documentation – information about a program, which includes comments inside the program as well as user's guides

5. Logic errors – a problem caused by incorrect coding which produces incorrect results, rather than causing the computer to crash

6. Program maintenance – the process of fixing errors in and updating software

7. Pseudocode – algorithm written in a combination of English and programming code ("fake or pretend program")

8. Run-time error – a problem that occurs as the program is executing, which causes it to crash (such as a division by zero error)

9. String – a series of characters; in Java, they are represented by String objects and string literals such as "hello"

10. Syntax errors – an error caused by breaking a language's grammar rules

11. Syntax – the grammar rules of a programming language

12. User-friendly – a program that is easy for the user to understand and use

13. White space – the insertion of tabs and line spacing that allows the program to be more readable

Unit 2: Programming Techniques and Characteristics of Good Programs

Programming I – Java
13

1. Boolean – a data type that can only take the values of true or false

2. Casting – used to convert a value of one type to a value of a different type; i.e. double to int

3. Character – a single letter, symbol, digit, or punctuation mark represented in Unicode

4. Concatenation – the process of attaching the end of one string to the beginning of another string, producing a longer string

5. Constants – a named memory cell that contains a value that cannot be changed from its initial value

6. Data type – a description of a set of values that a variable can have; i.e. int, double, char, and Boolean

7. Floating point (real) – a number that has a fractional component; numbers that contain decimal portions

8. Integer division – a type of division performed on an integer which returns the quotient

9. Integer – a positive or negative whole number or zero

10. Mathematical operators – symbols that represent mathematical operations: +, -, *, /, %, ++, - -, +=, - =, *=, /=, %=

11. Modulus – a type of division performed by the Mod operator which returns the remainder portion

12. Order of operations – the order that is used to perform mathematical calculations (parentheses, exponents, multiplication/division, addition/subtraction)

13.

14. Round-off errors – a round-off error occurs when a floating-point value cannot be stored in the allotted space and is rounded off

15. Variable – a named memory location that stores a value

Unit 3: Data Types and Mathematical Operations

Promotion (widening conversion) – automatic conversion of compatible data types when the resulting field is larger than the source; i.e. double x = 2 * 2 result
would yield a value of 4.0 rather than int 4

Programming I – Java
14

1. Arguments (actual parameters) – a value or expression passed in a method call

2. Class – a description of the attributes and behavior of a set of computational objects

3. Interactive program – a program that requires user input when executing

4. Method – a named set of code that can be treated as a until and invoked by name

5. Object – an encapsulated collection of data variables and methods, an instance of a class

6. Parameters (formal parameters) – a parameter name in a method receiving its value from the actual parameter passed to it

7. Prompt – a message that asks the user for information

8. Pseudorandom – a number that a program seems to create at random but that really comes from a seed value

9. Return type – a type of value returned by a method

Unit 4: Using Selected Standard Classes

Programming I – Java
15

1. Boolean expression – an expression that gives a true or false result, mostly used in selection and repetition statements

2. Logical operators – one of the operators that perform a logical NOT (!), AND (&&), or OR (||), returning a Boolean result

3. Nested decision statements – a decision statement used within another decision statement

4. Relational operator – an operator used for comparison of data items of the same type

5. Short-circuit – when using logical operators in a Boolean expression, if the left operand can determine the result, the right operand is not evaluated

6. Truth tables – a complete list of all of the possible values in a Boolean expression

Unit 5: Decision Structure

Programming I – Java
16

1. Accumulators – a variable used for the purpose of summing successive values of some other variable

2. Counters – a variable used to count the number of times some process is completed

3. Entrance condition loops – a loop that tests the condition before going into the loop body, will execute 0 or more times (for and while loops)

4. Exit condition loops – a loop that tests the condition at the bottom of the loop; therefore, will always execute at least one time (do while loop)

5. Nested loops – a loop as one of the statements in the body of another loop

Unit 6: Loops

Programming I – Java
17

{

{

double avg = 0.0;

System.out.print ("Enter the number of students: ");
numStudents = input.nextInt();

for (int x = 1; x <= numStudents; x++)

public static void main(String[] args)

Scanner input = new Scanner(System.in);

String name = "";
int numStudents = 0;

Step 4: close the input stream using the close() method.

Example of a program that uses only numbers:

import java.util.Scanner;

public class ScannerPractice

■ nextBoolean()

Note: This method accepts multiple word responses.

returns the double read from the input stream

returns the int read from the input stream

returns the boolean read from the input stream

■ nextLine()

■ nextInt()

Note: It will skip over white space. However, the delimiter for the string is white space (space, tab, enter). Therefore, it will read only the first
word of a multiple word response.

returns the string up to the end of line character from the input stream.

■ nextDouble()

In the main method:

Returns a string from the input streamnext()

Step 2: instantiate a Scanner object;

Step 3: read the data using the following methods—

Appendix A

Students should use the Scanner class to read data from the keyboard. To do that, the student must import the scanner class. (See example below.)

Using the Scanner Class

Step 1: import java.util.Scanner;

Programming I – Java
18

{

{

}
else
{

}
}

}
}

{

{

 + (age * 365 * 24 * 60 *60) + " seconds old.");

}
}

{

{
public static void main(String[] args)

System.out.println (name + ", you sure are old. You are "

input.close();

Example of using Strings with the next() method. The problem with next is that it reads to the white space; thus, using only the first name and trying to make the
middle name the age (which throws an exception).

public class ScannerPractice

String name = input.nextLine();
//The nextLine() method reads everything up to the end of line
System.out.print ("Enter your age: ");
int age = input.nextInt();

public class ScannerPractice

public static void main(String[] args)

Scanner input = new Scanner(System.in);

System.out.print ("Enter your name: ");

System.out.println("Student " + x + ": Failing");

input.close();

Example of a very simple program that reads Strings using the readLine() method and numbers: Generally, students will encounter no problems reading Strings
as long as they read the strings first and then read the numbers.

import java.util.Scanner;

System.out.print("Enter the average for Student " + x + ": ");
avg = input.nextDouble();
if (avg>=59.5)

System.out.println("Student " + x + ": Passing");

Programming I – Java
19

//the
//stream)

}
}

{

{
Scanner

String
int
double

{

//advances the input stream to the next real data and prepares
//for the following nextLine(); when it loops back.

System.out.print("Enter the average for " +name + ": ");
avg = input.nextDouble();
endOfLineCharacter = input.nextLine();
//reads the end of line character into a “junk” variable, which

//the following nextLine();
for (int x = 1; x <= numStudents; x++)

System.out.print("Enter the student\'s name: ");
name = input.nextLine();

numStudents = input.nextInt();
endOfLineCharacter = input.nextLine();
//reads the end of line character into a “junk” variable, which
//advances the input stream to the next real data and prepares for

import java.util.Scanner;

public class ScannerPractice

public static void main(String[] args)

System.out.print ("Enter the number of students: ");

int age = input.nextInt();
System.out.println (name + ", you sure are old. You are "

input.close();

Example of using the readLine() method following either readInt() or readDouble: Once an int or a double has been read, the end-of-line character is left in the
stream. Therefore, the readLine() will pick up the end of line character as the data for the next String variable rather than the data on the following line. Here is how to
avoid that.

//If the student tries to enter Mary Ann as the name, Mary becomes
//the name and then it attempts to use Ann (the next data in the
//stream) as the age. This will throw an exception.
System.out.print ("Enter your age: ");

Scanner input = new Scanner(System.in);

System.out.print ("Enter your name: ");
String name = input.next();

Programming I – Java
20

{

}
else
{

}
}

}
}

System.out.println(name + ": Failing");

input.close();

if (avg>=59.5)

System.out.println(name + ": Passing");

Programming I – Java
21

int num = (int) ((100-1+1) * Math.random() + 1); -or-

To get a number between 50 and 75, the formula is

int num = (int) ((75 – 50 + 1) * Math.random() + 75); -or-
int num = (int) (26 * Math.random() + 75);

int num = (int) (100 * Math.random() +1);

To get a number between 0 and 100, the formula is

int num = (int) ((100-0+1) * Math.random() + 0); -or-
int num = (int) (101 * Math.random());

double num = Math.random();

However, most of the time, one needs an integer within a range. The generic formula is:

int num = (int) ((high – low + 1) * Math.random() + low);

To get a number between 1 and 100, the formula is

Appendix B
Using the random() method from the Math class

When your students are tested they will be tested using the random() method from the Math class—not the random method from the util class. Nothing has to be
imported. There is no “randomize” command like in many other languages.

The random() method from the Math class returns number in the range of 0<=num<1:

Programming I – Java
22

